The Reduction of Chromium

Purpose

To demonstrate two oxidation states of chromium, generate heat, and produce a gel by mixing two liquids.

Materials

Two 250 mL Erlenmeyer flasks 0.5M K₂Cr₂O₇

Tall form beaker 4M NaHSO₃

Two 50 mL graduated cylinders Hot plate

Procedure

1. Prepare solution 0.5M K₂Cr₂O₇. Dissolve 14.7g of potassium dichromate in 100 mL of warm distilled water.

- 2. Prepare solution 4M NaHSO₃. Dissolve 41.6g of sodium bisulfite in 100 mL of warm distilled water.
- 3. Place 50 mL of K₂Cr₂O₇ solution in the beaker and add an equal amount of NaHSO₃ solution to the beaker.
- 4. The mixture will immediately turn a very dark green, generating quite a bit of heat, and after about 20-30 seconds it will become a gel and lighten.

Additional Information

- 1. More than one reaction appears to occur in this system. The most significant reaction involves the reduction of chromium and the subsequent formation of hydrated hydroxide:
- 2. It is likely the ions of the sulfate and sodium are incorporated in the gel to form an alum [KCr(SO₄)₂].
- 3. This demonstration is a fine introduction to an oxidation-reduction reactions unit.

Disposal

Remaining solution/solid should be placed in a properly labeled waste container. A spatula may be necessary to scoop out the gel.

Reference

Summerlin, L., Ealy, J., and Borgford, c> Chemical Demonstrations, Volume II, ACS, 1987.